Five Easy Pieces: The Dynamics of Quarks in Strongly Coupled Plasmas
نویسندگان
چکیده
We revisit the analysis of the drag a massive quark experiences and the wake it creates at a temperature T while moving through a plasma using a gravity dual that captures the renormalisation group runnings in the dual gauge theory. Our gravity dual has a black hole and seven branes embedded via Ouyang embedding, but the geometry is a deformation of the usual conifold metric. In particular the gravity dual has squashed two spheres, and a small resolution at the IR. Using this background we show that the drag of a massive quark receives corrections that are proportional to powers of log T when compared with the drag computed using AdS/QCD correspondence. The massive quarks map to fundamental strings in the dual gravity theory. We use the perturbation produced by these strings to compute the wake and compare with the results obtained using AdS/QCD correspondence. We also study the shear viscosity in the theory with running couplings, analyze the viscosity to entropy ratio and compare the result with the bound derived from AdS backgrounds. In the presence of higher order curvature square corrections from the back-reactions of the embedded D7 branes, we argue the possibility of the entropy to viscosity bound being violated. Finally, we show that our set-up could in-principle allow us to study a family of gauge theories at the boundary by cutting off the dual geometry respectively at various points in the radial direction. All these gauge theories can have well defined UV completions, and more interestingly, we demonstrate that any thermodynamical quantities derived from these theories would be completely independent of the cut-off scale and only depend on the temperature at which we define these theories. Such a result would justify the holographic renormalisabilities of these theories which we, in turn, also demonstrate. We give physical interpretations of these results and compare them with more realistic scenarios.
منابع مشابه
Microscopic dynamics in two-dimensional strongly-coupled dusty plasmas
A strongly-coupled plasma is a collection of free charged particles that interact with a Coulomb repulsion that is so strong that nearby particles do not easily move past one another. Unlike weakly-coupled plasmas, strongly-coupled plasmas exhibit a self-organization of particles into an arrangement like a solid crystalline lattice or a liquid. Dusty plasmas consist of micron-size particles of ...
متن کاملExperimental Measurement of Self-Diffusion in a Strongly Coupled Plasma
We present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short time scales compared to the inverse collision rate. The measured average velocity of a tagged population of ions is shown to be equivalent to the ion-velocity autocorrelation function. We thus gain access to fundamental aspects of the single-particle dynamics in strongly c...
متن کاملEmerging Theory of Strongly Coupled Quark-Gluon Plasma
RHIC data have shown robust collective flows, including recent spectacular “conical flow” from quenched jets: that confirms that QGP above the critical line is in a strongly coupled regime. One way to study Non-Abelian classical strongly coupled plasmas is via molecular dynamics, which was recently extended to plasmas with electric and magntic charges. First results on its transport (diffusion ...
متن کاملGauge/String Duality, Hot QCD and Heavy Ion Collisions
Over the last decade, both experimental and theoretical advances have brought the need for strong coupling techniques in the analysis of deconfined QCD matter and heavy ion collisions to the forefront. As a consequence, a fruitful interplay has developed between analyses of strongly-coupled non-abelian plasmas via the gauge/string duality (also referred to as the AdS/CFT correspondence) and the...
متن کاملSolution and stability analysis of coupled nonlinear Schrodinger equations
We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009